MATH 3060 Tutorial 5

Chan Ki Fung

November 2, 2021

In this tutorial, we discussed some Midterm questions.

1 Some definitions

- 1. Let d, d' be two metrics on X, we say d is stronger than d' if $d' \leq Cd$ for some $C \in \mathbb{R}$.
- 2. A map $f: (X, d) \to (X', d')$ is an isometric embedding if for any $x, x' \in X$, d'(f(x), f(x')) = d(x, x').
- 3. A metric space is COMPLETE if every Cauchy sequence has a limit.

2 Questions of this tutorials

True or False

- (a) Let $f: (X, d) \to (X, d')$ be a bijective continuous map such that f^{-1} is also continuous, then (X, d) is complete if and only if (X', d') is complete. Ans: False, consider \mathbb{R} and (0, 1).
- (b) Suppose d, d' be two metrics on X, with d stronger than d'. If U ⊂ X is open with respect to d', U is also open with respect to d. Ans: True
- (c) Suppose d, d' be two metrics on X, with d stronger than d'. If $U \subset X$ is open with respect to d, U is also open with respect to d'. Ans: False
- (d) Suppose d, d' be two metrics on X. Suppose also that a subset U ⊂ X is open with respect to d if and only if U is also open with respect to d', then d and d' are equivalent.
 Ans: False, consider d and d/(1 + d)
- (e) Let (X, d) be a metric space, and $(C(X), d_{\infty})$ be the set of continuous functions on X with metric defined by $d_{\infty}(f, g) = \sup_{x \in X} |f(x) g(x)|$. Then C(X) is complete. Ans: True

- (f) C([0,1]) equipped with the L1 metric is complete.
- (g) Any isometric embedding is injective. Ans: True
- (h) Let (X, d) be a metric space. For any $x \in X$, we can define $d_x \in C(X)$ by $d_x(y) = d(x, y)$. The map $x \mapsto d_x$ is an isometric embedding of X into C(X). Ans: False. Construct a sequence of functions f_n with $f_n(x) = 1$ on $[0, \frac{1}{2}]$, and $\int_{\frac{1}{2}}^{1} |f(x)| dx \to 0$.
- (i) Every metric space has a countable dense subset. Ans: False, consider a discrete metric.